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Abstract. Better predictive models of mechanical failure in low-

weight heat shield composites would aid material certification for

missions with aggressive atmospheric entry conditions. Here, we

develop such a model for the rapid engineering analysis of the fail-

ure limits of phenolic impregnated carbon ablator (PICA) - a lead-

ing heat shield material whose structural component is a carbon

fiber network. We hypothesize inelastic deformation failure mech-

anisms and model their behavior using molecular dynamics simula-

tions to calculate the binding energy. We then upscale this binding

energy to the macroscale using a renormalization argument. The

approach delivers insightful and reasonably accurate macroscale

predictions that compare favorably to experiments. In applica-

tion, the model is validated for a particular variety of PICA by

comparison to experiment and would then be used to study design

scenarios in different entry conditions.
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1. Introduction

Phenolic impregnated carbon ablator (PICA) is a leading heat shield

material for thermal protection of spacecraft during atmospheric entry.

Within the space community, there has been growing interest in the

performance of heat shields during re-entry after extended operations

in space. Mars Sample Return [1] serves as a prominent example.

Additionally, concern has increased regarding the rapidly growing pop-

ulation of space debris in near earth orbit and corresponding increased

probability of an impacted mission asset. Within the theater of re-

entry and descent, these two issues motivate a critical question: If an

impact event occurs, will the re-entry be able to proceed with a high

confidence of success? To provide an answer to this question in specific

entry scenarios, we must be able to characterize the mechanical failure

processes of the heat shield material.

The mechanical behavior of PICA arises from its microstructure. At

the micro-scale, PICA is composed of a carbon fiber network (CFN),

specifically the commercially available FiberForm material. Fig. 1 il-

lustrates the complicated structure of a CFN. The CFN is impregnated

with low density phenolic to obtain PICA. During re-entry, the thermal

loads pyrolyze the phenolic which out-gasses and cools the material dra-

matically, providing thermal protection. Modeling mechanical failure

in many conventional materials—e.g. metals or glasses—is well charac-

terized and may be understood from the viewpoint of defect mechanics

(c.f. for instance [2, 3]). However, it is not immediately clear how to
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apply such standard techniques to model PICA due to its highly ir-

regular structure. The derivation of pertinent physical models for such

disordered carbon fiber structure merits a specialized treatment.

Figure 1. An image of the CFN of FiberForm, used for
fabrication of PICA.1

Previous studies have been performed to understand the deteriora-

tion of PICA heat shields under typical mission operating conditions.

Lachaud et al. [4] proposed a reaction-diffusion type equation to model

the ablation of phenolic within the CFN matrix (see also [5]). Martin

et al. [6] applied a simplified model of spall particle ejecta formation

to probe the effects of carbonaceous ejecta in the flow around a reen-

try body. Agrawal et al. [7] performed fracture tests on notched and

un-notched samples and observed a complicated response of the fibers

as the notch elongated until sample failure.

More generally, CFN (or similar fiber and yarn networks) have been

studied both experimentally and numerically [8, 9, 10, 11, 12, 13].

These studies invariably proceed by constructing a high fidelity finite

1Private communication regarding engineering and mission usages and characteri-
zation of PICA, Margaret Stackpoole, 2019
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element model of a particular configuration of CFN and comparing it

to a nicely constructed experiment. Long et al. [14] specializes to finite

element beam models which is in principle more efficient and Zhang et

al. [15] studied homogenization of representative volume elements of

fiber networks. From a bottom-up modeling perspective, peridynamics

modeling of CFN [16, 17] reproduced qualitatively striking aspects of

fracture but ultimately were limited to relatively small simulation sizes.

All these studies constitute an intriguing collection of behaviors and in-

terrelationships of physical processes in detailed albeit highly specific

test cases. However, generic insight into the energetics governing the

failure of CFN material remains elusive.

To our knowledge, no model yet exists that quantitatively character-

izes mechanical failure of PICA and explicitly explains this failure as

a direct consequence of its microstructure.

In this paper, our goal is to provide such a model by

• identifying the mechanism by which PICA fails – i.e. forms new

surfaces in response to mechanical load and

• deriving simple yet effective physical models from our under-

standing of these mechanisms which may be used for design.

We now outline our assumptions and strategy for accomplishing this

task. Since PICA is a composite material, in principle its failure de-

pends on both the CFN as well as the phenolic. However, order of

magnitude estimates from [7, 18] suggest that the CFN is substantially

stronger. We follow this assumption here and later show the network

structure plays a critical role and that any effects of phenolic may be
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accounted for a posteriori. In a CFN, fibers are fused together by dis-

ordered carbon interfaces which have a length scale of several microns1.

We call these disordered carbon interfaces joints. We further assume

the joints are composed of vitreous amorphous carbon (also known as

isotropic carbon) with atomic networks resembling a three dimensional

random network [19]. Previous studies have probed different amor-

phous carbon-carbon compounds and observed varied mechanical and

thermal response, see [19] and references therein for a general overview.

The observations suggest isotropic carbon fails by brittle conchoidal

fracture [19]. Since individual carbon fibers possess extremely large

mechanical strength, the joints are the weakest points in the CFN.

Thus, the properties of the joint material in a CFN govern failure.

Under these assumptions, a natural strategy is to use lower scale

principled physics simulation such as molecular dynamics to probe the

inelastic strength behavior of amorphous carbon. Molecular dynam-

ics simulations of inelastic failure [20, 21] illustrate a wide variation in

strength behavior as a function of the initial amorphous carbon state

and motivate the need for additional simulation studies of amorphous

carbon. Thus, we perform molecular dynamics simulations of amor-

phous carbon under tensile loading using a configuration specifically

motivated by the manufacturing process used for FiberForm.

We wish to derive a macroscale law directly from this microscale

description of the amorphous carbon behavior. From general fracture

mechanics theory, we conjecture that this law should have the form

of a point-wise relation between a stress-like variable and a strain-like
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variable across the plane of failure [3]. A formula of this type is known

as a cohesive law. For an overview of cohesive laws, see the review

article [22], which provides many different possible functional forms

and references to applications for different materials. The unifying

characteristic feature of a cohesive law is its non-monotonicity. The

stress first increases as a function of strain and then decreases.

Many orders of magnitude separate the length scales of the bulk

CFN material and the joints. Across these different length scales, it is

possible that not only the action of a single joint is important, but also

the combined interaction of all the joints. We adapt a theory, initially

developed in the context of separation of atomic planes [23, 24] to our

present context. This strategy enables us to predict the behavior of a

large, but finite, number of interacting joints and link the results from

molecular dynamics to the macroscale.

The specific details of this strategy result in an explicit dependence

on the number of interacting joints. However, it is non-trivial in a CFN

to compute a reasonable estimate of this value. To accomplish this task,

we explicitly construct a representation of a carbon fiber network given

a known length of each fiber, number of fibers, and relative density (i.e.

the ratio of density of the bulk CFN to the density of the constituent

amorphous carbon). We then use graph-theoretic methods to compute

shortest traversal paths and take this as an estimate of the number of

interacting fibers.
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The remainder of this paper is organized into a methods section –

detailing the specifics of the cohesive law derivation, molecular dynam-

ics, and graph techniques – and a results section – wherein we show the

results of the molecular dynamics calculations, the macroscale cohesive

law, and compare the results to experiments.

2. Methods

In this section, we describe the methods utilized in three subsections

where we

• derive a generic cohesive law as a function of the inter-fiber

binding energy,

• perform molecular dynamics calculations to compute the bind-

ing energy, and

• develop a graph-theoretical approach to estimate the density of

inter-fiber joints as a function of microscale parameters.

2.1. A renormalization approach for cohesive laws. We begin by

idealizing CFN as a 1-D chain with N joints connecting each fiber to

its neighbors. This is illustrated in Fig. 2. We suppose that each fiber-

fiber interaction is characterized by an inter-fiber binding law which

relates the traction on the joint, t, to the displacement of the joint, δ.

We suppose that this relationship derives from a potential, i.e.

t =
∂φ

∂δ
.

Furthermore, suppose that the qualitative behavior is given as in Fig. 3

such that the functional relationship possesses an inflection point at δc.
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Figure 2. Simple idealization of CFN microstructure
with inter-joint length scale l. Macroscale CFN sample
with length scale L. t̄ and δ̄ are a macroscale traction
and displacement respectively.

Figure 3. The idealized inter-fiber binding law energy
and corresponding force as a function of displacement
δ. A critical displacement δc marks the transition from
increasing to decreasing traction.

We are interested in the up-scaling of such microscale knowledge to

the large scale behavior of CFN of length scale L = Nl, see Fig. 2.

We now consider applied traction t̄ and displacement δ̄ at the macro-

scale and endeavor to determine their relationship based on microscale

physics of CFN. The following argument is due in large part to [23].
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Consider the total energy of all fibers

(1) Etot =
N∑
i=1

φ(δi) .

Assuming that minimum potential energy is an appropriate governing

principle, we define the macro-binding potential as

(2) φ̄(δ̄) = inf
{δ1,...,δN}

N∑
i=1

φ(δi) ,

subject to δ̄ =
∑N

i=1 δi and from equilibrium t(δi) = t̄(δ̄) = φ̄′(δ̄). For

fixed traction t, due to the increasing-decreasing behavior of t(δ) (see

Fig. 3), it is sufficient to simply consider two possible δ values. Hence,

equation (2) reduces to

(3) φ̄(δ̄) = inf
{δ1,δ2,N1,N2}

(N1φ(δ1) +N2φ(δ2)) ,

with N1 +N2 = N and N1δ1 +N2δ2 = δ̄. We now proceed by cases to

find minimizing N1, N2. Consider first N2 = 0 and N1 = N . Then for

fixed δ̄ as N becomes large δ1 = δ̄/N becomes small. Hence, elastic

deformation will dominate since the stiffness of the binding potential

is C = φ′′, we obtain

φ̄(δ̄) =
C̄

2
δ̄2 ,

where C̄ = C/N . Second, consider the case N2 = 1 and N1 = N − 1.

By identical argument δ1 must be small as N becomes large for fixed

δ. Consequently δ̄ ≈ δ2 as N becomes large. Thus

φ̄(δ̄) = ξ ,
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where ξ ∈ R+ characterizes the large δ asymptote of φ. (Note, in this

case, δ1 → 0 which results in no elastic contribution.) For N2 > 1, it is

simple to show that the energy is larger than for the case N2 = 1, so it

sufficient to only consider these first two cases. Equation (3) reduces

to

(4) φ̄(δ̄) = min

(
C̄

2
δ̄2, ξ

)
,

which leads to the transition condition at δ = δc

C̄

2
δ̄2 = ξ ,

which is then solved for

δc =

√
2Nξ

C
.

Inserting this into the expression for φ̄′(δ̄) we obtain

σc = t̄(δc) =

√
2Cξ

N
,

a macroscopic observed stress which is a decreasing function of N . If

we consider a chain of N fibers each with length l, then the total length

of the interacting fibers is L = Nl. The uniaxial critical strain follows

as

εc =
δc
L

=
δc
Nl

=

√
2ξ

NCl2
.

Finally, to relate the macroscopic stress to the microscopic stress, the

ratio of the surface area of the macroscopic structure exposed to a load

to that of the surface area of the load bearing components or fibers must

be taken into account. Define a macro stress, σm, due to some loading
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condition over a CFN sample over a surface area A. Furthermore,

suppose that the minimal load bearing area, a, is that of the inter-fiber

joints in a particular cross section of the material. Then, we have

(5) σm =
a

A
σc =

a

A

√
2Cξ

N
.

We note that the factor a/(A
√
N) provides an a priori estimate of the

change in order of magnitude between the macroscopic state of stress

and that experienced at a microscopic material point.

The specific form of the cohesive potential, φ, will be selected and its

parameters fit to results from molecular dynamics calculations. Then,

the number of joints N and the ratio a/A will be computed using the

graph based model.

2.2. Molecular dynamics. We now consider the tensile behavior of

isotropic carbon and estimate the stresses involved in the formation of

new surfaces. To produce an appropriate molecular dynamics model,

we borrow ideas from the manufacturing process of a specific CFN

material, FiberForm. In this process, phenolic is used as part of the

initial mixture with carbon fibers. This mixture is then heated until all

non-carbon constituents of phenolic evaporate. The remaining carbon

collects in a disordered state forming the joints that connect each fiber

to its neighbors. To best emulate this process, the amorphous carbon

structure we use in our molecular dynamics calculations is obtained by

a melt-quench procedure from a phenolic initial state.



12 A MULTISCALE COHESIVE LAW FOR CARBON FIBER NETWORKS

We utilize the phenolic structure [18] pictured in Fig. 4 as the start-

ing point for computation of isotropic carbon. We remove the hydro-

gen and oxygen atoms and perform an energy minimization to relax the

structure. There are 13, 392 carbon atoms remaining in the simulation.

We use a well-documented and validated potential for carbon-carbon

interactions, ReaxFF [25], as implemented in LAMMPS [26]. In par-

ticular, ReaxFF is constructed with attention to the potential energy

contributions of various chemical interactions. For a detailed discus-

sion of an efficient implementation of this potential and its validation

see [27].

We relax the structure for 0.15 ns at 3000 K using the canonical

ensemble (NVT). The point here is not to fully melt the structure but

allow the carbon compound to adopt a more stable configuration. The

structure is then cooled to 300 K for 5700 fs. Such a cooling rate

is fast but has been used before in the study of amorphous carbon

structures so we take it as a reasonable point of departure [20]. In our

MD calculations, the density obtained from the phenolic is ρ ≈ 1.2

g/cm3. We remark that we compared the calculations reported herein

to those based on a dense amorphous carbon. The density of the initial

carbon structure was important to get reasonable mechanical properties

and detailed exploration, though beyond the present scope, would be

valuable.

We then utilize a time-step of 0.5 fs to advance a molecular dynamics

calculation in the isobaric-isothermal ensemble (NPT). Tensile defor-

mation is enforced by an affine deformation of the simulation box every
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10,000 time steps, while the dimensions of the box in directions nor-

mal to the deformation are allowed to relax according to maintain an

isobaric system. The resulting effective strain rate is O
(

1081

s

)
which

is typical of molecular dynamics.

(A)

(B)

(C)

(D)

Figure 4. Molecular dynamics simulation cells used for
mechanical property characterization. (A) Hydrogen and
oxygen is systematically removed from the initial pheno-
lic state to create a “carbonized” phenolic. The cohesive
properties of the carbon material are determined through
large deformations in (B), (C), and (D).

2.3. A graph based approach to modeling carbon fiber net-

works. We now develop a simple method to estimate the number of

active joints in a sample of CFN material. For the calculations in this

work, we adopt estimates of parameters for the FiberForm constituent

of PICA following Ref. [28]. We assume a uniform distribution of fibers

in both the position of their centroid and the angle relative to the
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macroscopic sample. The chop length refers to the length of each in-

dividual fiber. We assume this to be on the order of magnitude of 1

mm. Additionally, we assume that the radius of the fiber is 10 µm. We

study a representative volume element (RVE) with a side length of 1

cm. We assume an interaction length (the sample size) of 36 cm basing

this on the approximate length of FiberForm and PICA coupons for

tensile tests. We then populate the RVE with fibers and determine the

minimal number of joints required to traverse from one side of the RVE

to the other and postulate that this is a good estimate of the number

of interacting joints. Further, we compute the total number of vertices

which can be used to compute the ratio a/A. We compute these using

Algorithm 1.
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Result: Distribution of path lengths to traverse PICA sample

Require: Number of fibers, chop length, fiber angle distribution;

Generate fibers by sampling from distribution;

Compute all intersections using sweep line algorithm;

Generate graph with fiber intersections as nodes;

for Number of fibers do

Order intersections by nearest neighbors;

for Number of intersections on fiber minus one do

Add an edge to graph between each intersection and its

next nearest neighbor;

end

end

Identify top and bottom nodes ;

Sample from top and bottom nodes and compute shortest path

length using a breadth first search for unweighted graphs;

Algorithm 1: PICA graph model algorithm

We plot an example configuration of the CFN associated with Fiber-

Form and PICA (in red) and the corresponding theoretical connectivity

graph (in blue) generated from it by Algorithm 1 in Fig. 5. Evidently

both the graph and the real space configurational representation of

CFN exhibit random variations consistent with observations of samples

of PICA in experiments [7]. We note that CFN can posses directional

dependency (e.g orthotropic symmetry) in which case the same tech-

nique would be applicable but would require a specific treatment of the

enforced symmetry.
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Figure 5. A representative volume element of the car-
bon fiber network. The corresponding connectivity graph
representing fibers intersections as nodes.

3. Results and Discussion

We show the results of the MD calculations, the graphical model,

and compare the results of the cohesive law to experiments.

3.1. Stress strain response. From molecular dynamics simulations,

we compute several different tensile extension tests of the amorphous

carbon that bond joints at different pressures and temperatures and

display the results in Fig. 6. The generic behavior is consistent across

all cases computed, including the characteristic lack of growth at large

strains which results as a crack forms. Some of the variation in be-

havior, however, is less obvious. At low pressure, increasing the tem-

perature decreases the maximum tensile strength slightly. If the car-

bon is preconsolidated to a high pressure, then the maximum tensile
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strength increases. If the temperature is raised and then the carbon

is preconsolidated, the maximum tensile strength increases by an even

larger margin. This occurs because the higher temperature aids con-

solidation processes by increasing the kinetic rates governing atomic

rearrangement. Thus, the resulting solid is a more energetically stable

and consequently more difficult to break.
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Fréchet Fit

Figure 6. Deformation response of PICA to tensile
loading at T = 300, 900 K, and P = 0.1, 10 GPa, as
well as the goodness of fit of the Fréchet function to the
MD data at 300 K and 0.1 GPa.

There are many possible choices for a cohesive zone law. Many ex-

amples are given in [29] and the references therein. For specificity, we

adopt the Fréchet function

σ(ε) = σ0ε
−α−1 exp

(
−
(
ε

β

)−α)
,
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with free parameters σ0, α and β. We fit the free parameters to the

300 K and 0.1 GPa curve, display the parameters in Table 1, and show

goodness of fit in Fig. 6. Fitting to the other curves does not alter the

qualitative behavior and primarily only affects the parameter σ0. Thus,

the effect of temperature and pressure may be easily incorporated by

choosing σ0 to be some function of pressure and temperature. For

instance, a power law model

σ0 ∼ T−νpq ,

would be a reasonable model in many instances with power law ex-

ponents, ν, q > 0. We emphasize that the qualitative increasing-

decreasing behavior is the same under all conditions examined. Thus,

we expect the generic mechanisms governing the relation to the macroscale

to be consistent independent of pressure and temperature. Conse-

quently, for simplicity of discussion, we will proceed with the constants

listed in Table 1.

Table 1. Parameter values for the Fréchet fit to MD
data of tensile failure of carbonized phenolic.

σ0 α β

8.82929 GPa 4.96268 1.53662

3.2. Scaling of the fiber network. The minimum number of joints

needed to traverse a CFN sample is determined by the calculation

described in Algorithm 1. Depending on the beginning and ending

joints located on opposite sides of the RVE, there is a distribution of

various minimal path lengths. The input parameters given in Alg. 1 are
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kept constant, however the resulting distribution is a function of the

random initialization of the fiber locations and angles. In Fig. 7, three

histograms resulting from different initializations are shown. There

is relatively little variation in average and standard deviation between

different random initializations of the fiber network. This suggests that

the subsequent analysis is robust with respect to the fiber distribution.

Thus, we note the mean of the distribution is about ∼ 240 and we

utilize this value hereafter in calculations.

Thus, we assume that the average number of joints across the volume

is well represented by the above computation. For the assumptions of

the model discussed subsequently, we take the total number of fibers to

be N ∼ number of joints across the RVE×number of RVEs across one

coupon ∼ 9000.

Finally, we estimate the fraction of load bearing material by

a

A
∼ number of joints in cross section× area of single joint

∼ 63966× (5× 10−4)2 ∼ 0.01 ,

where we have utilized the configuration specified in Fig. 5 (noting

that the total cross sectional area is 1 cm2) and estimated the size of

the cross sectional area of a single joint by examining Fig. 1 to be the

projected contact area between two fibers ≈ 25µm.

Thus, the parameters of the theory depend on density and follow the

scaling suggested by Fig. 8 (A) and (C) (the trend lines are denoted in

green)

a

A
∼ ρ2 ,
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Figure 7. Distributions of the minimum number of
fiber joints to traverse the RVE along a path. A compari-
son of three distributions is made using different random
initial conditions to construct the RVE. The mean and
standard deviation are consistent across all cases tested.
The initial conditions generate different histograms and
bound the statistics of the graph model.

and

N ∼ ρ .

From Fig. 8, (B) and (D), we see that the number of vertices increases

with the chop length and the total number of fibers.
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(a) (b)

(c) (d)

Figure 8. The dependence of the number of active
joints and the total number of joints on the density and
the number of fibers as well as the relationship to chop
length. All lengths are in cm.

3.3. Comparison to experiment. We now compare predictions of

the model to experimental tensile tests of FiberForm supplied by the

manufacturer, Fiber Materials, Inc., as well as published [7] and unpub-

lished data from testing performed on FiberForm and PICA internally

by past programs at NASA Ames Research Center.

As the properties of PICA are proprietary, the examination of frac-

ture is performed in relative units. Consider some reference density

ρ0. Based on order of magnitude estimates from experiments2, we as-

sume that the number of interacting fibers at this reference density is

N ≈ 9000, and the ratio of load carrying cross sections is a/A ≈ 0.01.

The experimental densities reported are ρ = ρ0, ρ = 0.62ρ0, and

ρ = 0.53ρ0. Based on the scaling of N and a/A as a function of density
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we directly compute the renormalized curves. We plot the result of

this calculation in Fig. 9 (A) where the vertical axis shows stress and

the horizontal axis shows strain. For comparison in Fig. 9 (A), we also

plot experimental data points taken from tensile tests of PICA variant

coupons. The actual experimental values plotted are strain to failure

and ultimate strength. The different colors indicate the different densi-

ties of PICA variant tested. We note that there is substantial scatter in

the low density experimental data (which is common in these materials

[7]) and that the higher density experimental data only report one test

point per density.

The best criterion for comparison is to compare the peak of each of

the model curves to the data points. This is due to the fact that at

macroscopic time scales, once the material reaches the peak stress, the

stressed state of the material will relax extremely quickly. The peak of

each of the model curves exhibits strong agreement with experimentally

reported values and the correct behavior as a function of density is

reproduced.

As a second mode of comparison, we examine some data collected

from in-house experiments at NASA Ames on FiberForm. FiberForm

has a directional dependence arising from the fibers being set down

in a particular plane leading to a distinction between in-plane and

through-plane mechanical response. From experiments and our graph

based analysis, we estimate a/A|through plane , a/A|in-plane, Nthrough plane ,

and Nin-plane reported in Table 2. The resulting comparison is displayed

in Fig. 9 (B). Again, the peak of each of the model curves agrees closely
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with the computed data though there is substantial scatter in the data.

Thus, the apparent dependence on loading direction has a reasonable

explanation in terms of the microscopic parameters, N and a/A.

These comparisons suggest that the joint-wise renormalized cohesive

law based on atomistic binding energies as proposed in this study is

a strong candidate model for the mechanism of failure. In particular,

using information easily obtainable from engineering characterization

such as number of fibers and diameter of fibers, we have predicted

macroscopic failure properties including a nontrivial dependence of the

failure behavior on relative density and orientation. This works because

the cohesive energy of the amorphous carbon joints at the nano-scale,

as computed from MD, is correctly translated to the macroscale by the

renormalization based on the number of fibers.

We remark we have assumed that the mechanical properties in PICA

are entirely dominated by the CFN. However, it would be very reason-

able to consider the effect of phenolic in PICA. This would most reason-

ably enter the present model as a multiplicative pre-factor in equation

(5). Alternatively, one could also envision that this contributes addi-

tional linkages in the network.

Table 2. Parameters for Fig. 9 (B) comparison.

a/A|In plane a/A|Through plane NIn plane NThrough plane

0.019 0.00051 42300 2700
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Figure 9. (A) Comparison of the renormalized cohe-
sive law to several experimental measurements of PICA
at 300 K. We note that as the density decreases the
maximum stress decreases and the critical strain in-
creases. The samples were measured in plane and were
not charred. Note: The vertical axis has been re-scaled
to fractions of the maximum observed stress. (B) Com-
parison of the renormalized cohesive law to several ex-
perimental values of the ultimate tensile strength of in-
house samples FiberForm with different densities of ran-
dom CFNs at 300 K. The maximum stress decreases and
the critical strain increases in the transition from in-plane
to through-plane loading.
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4. Summary and Concluding Remarks

We have formulated a simple and micro-mechanically motivated model

for the ultimate tensile strength of carbon fiber network materials mo-

tivated by space flight and re-entry applications of FiberForm and

PICA. We have performed molecular dynamics calculations to char-

acterize tensile failure at various pressures and temperatures. A naive

comparison of molecular dynamics results to macroscopic stress mea-

surements, without taking into account intermediate length-scales, is

prone towards severe over prediction of thresholds of material failure.

Our model uses arguments from renormalization theory to establish the

interaction of a large, but finite, number of fibers. This accounts ef-

fectively for the disparate length-scales. Interestingly, this places CFN

materials in the same universality class of cohesive behavior as cleav-

age of atomic planes. This provides an atomistic characterization of

the material behavior and, when used in tandem with the scaling ar-

gument, delivers a prediction of the binding energy, strain, and stress

at the macroscale. To account for the non-trivial consequences of deal-

ing with a complex carbon fiber network, we utilized techniques from

graph theory to derive the inputs to our model not provided by molec-

ular dynamics, i.e. those having to do with the number of joints. We

compared the results of the theory to experiments conducted in house

at NASA Ames Research Center and have found good agreement.

Several lines of inquiry are immediately suggested by this study.

PICA possesses a complex micro-structure which dictates its macro-

scale thermo-mechanical response to engineering usage. The cohesive
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law can be combined with standard computational mechanics tech-

niques – e.g. finite elements, peri-dynamics – to calculate the mechan-

ical response of large scale systems. As discussed in the introduction,

an application of high interest to the authors is to model a micro-

meteoroid impact event into a heat shield and assess the functionality

of a thermal protection system during re-entry.

It is worth commenting on the transportability of this model to spe-

cific systems which may not share the exact numerical values assumed

herein and used to compute the presented examples. Additional MD

calculations are merited varying thermodynamic quantities such as the

initial density which can have significant variability in a disordered

solid [19]. The number of calculations needed would depend on the

thermodynamic operating range of the specific application. Measure-

ments of the application specific CFN would ideally be made estimating

the chop length, number of fibers per volume, and fiber radius. From

this, following Fig. 8 the parameters of the theory can be estimated.

In our opinion, further study of the nature of carbon fiber networks

as it pertains to failure is also merited. The theory proposed herein

is quasi-1D and thus oversimplified. The full treatment of disordered

networks is a challenging question. Direct simulation is limited due to

computational cost. One possible avenue to success, however, would

be to introduce additional ideas from graph theory to characterize the

random network to either directly compute macroscopic failure behav-

ior or to predict micro-mechanically motivated estimates of parameters

for reduced theories such as the one presented herein.
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There are additional effects which could lead to softening behavior

at the micro or meso-scale which we have not taken into account in

this study. First, we have assumed that there is no necking at the

joints. However, necking is a common pre-failure deformation process.

Similarly, thermal effects where the temperature increases substantially

due to plastic deformation results in a decrease in yield strength. Fi-

nally, chemical effects such as oxidation (c.f. for instance the stud-

ies [30, 31, 32]) constitute an additional contribution to the material

properties and potentially results in weakening at the fiber scale. In

principle, these effects could be incorporated into our current model as

additional weakening, however, we leave such enhancements to future

application specific work.
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